It’s time for the US to study geoengineering

Can we mimic volcanoes and cool the earth?

Geoengineering — deliberate, planetary-scale efforts to counter the impact of climate change — is so controversial that a high-powered 18-member Washington task force that spent almost two years studying the idea couldn’t decide what to call it.

Most want to rename it “climate remediation.” A few want to stick with geoengineering. But all agreed that, whatever you call it, the U.S. government should begin “a coordinated federal research program to explore the potential effectiveness, feasibility, and consequences of climate remediation technologies.”

In a 33-page report released today in Washington, the task force of the Bipartisan Policy Center emphasized that climate remediation is not a substitute for managing the risks of climate change through mitigation (i.e., reducing emissions of carbon dioxide and other greenhouse gases, most of them generated by burning fossil fuels). It also says that no geoengineering technology is ready for deployment.

But, the group said, it’s imperative that governments, scientists and engineers learn more about geoengineering because the risks of climate change are increasing.

Mitigation measures currently being considered, regardless of their pace of efficacy, will not be able to return atmospheric greenhouse gas concentrations to pre-industrial levels for centuries…

Although we do not know exactly how much the climate will change or how fast, globally disruptive or even catastrophic results are possible…Global climate change could unfold in ways that would be very difficult to manage

In plain language: what we’re doing (or not doing) now to deal with climate change isn’t working, and the consequences of those failures are likely to be disastrous.

“I’m not sure we would have had a consensus recommendation on research if mitigation efforts were going great guns,” said Stephen Rademaker, co-chair of the task force and a former assistant secretary of state during the Bush II administration. [click to continue…]

Saving Australia with geoengineering

Australia’s “worst flood disaster in living memory” threatens to swamp Brisbane, the country’s third-biggest city, reports The Australian. “It might be breaking our hearts at the moment,” said Queensland Premier Anna Bligh. “It won’t break our will.”

While floods hit northeastern Australia,  southern Australia has been suffering through the worst drought in its history, one that has lasted a decade. In 2009, The Washington Post described the Outback as a “crematorium for kangaroos, livestock and farm towns.”

“They’re optimistically calling it a drought,” says the veteran climate scientist Michael MacCracken. The drier conditions in Australia’s major agricultural areas appear to be a result of a shift in the storm track to the south, he says: “It’s not a drought. The Sahara isn’t having a drought. It looks instead to be climate change.” [click to continue…]

Geoengineering research, getting real

Geoengineering research is emerging from the laboratory.

Government-funded scientists in the UK are moving forward with a pair of small-scale, carefully-controlled experiments–one to test the qualities of particles that could be used to block the sun’s rays, and another in which droplets of water will be pumped into the air using a one-kilometer-long pipe.

The experiments are designed to help scientists better understand how a geoengineering technique known as solar radiation management, often called SRM, would work. For those of you who haven’t been paying attention, Geoengineering is the deliberate manipulation of the earth’s climate to counter the effects of global warming. Solar radiation management, meanwhile, is a technique intended to reduce the amount of sunlight hitting the earth, and thereby cool the planet. SRM can be attempted in a variety of ways, including by  injecting sulfate particles into the upper atmosphere to form aerosols–a process that happens naturally when volcanoes erupt, leading to a temporary global cooling.

How (maybe) to cool the planet

This is my fifth blogpost this year on geoengineering. (The others can be found here.) While the idea of geoengineering is, at first glance, so  so strange and scary that some people want to ban any research into climate manipulation,  I’m convinced the time has come not just for scientific research but for public conversation about geoengineering.

Why? Simply because the world’s collective efforts to curb climate change, such as they are, are failing. This week, while thousands of officials are meeting in Cancun for the UN’s COP16, the 16th major round of negotiations to deal with climate change, greenhouse gas emissions continue to rise. (See Cancun can’t: Ten reasons why the climate talks will fail) Last year’s emissions were 37% above those in 1990. So we’re not mitigating at all–to the contrary, our actions, each and every day, increase the danger of catastrophic climate disruptions. Earlier this year, a U.S. government interagency report concluded:

It is clear that impacts in the United States are already occurring and are projected to increase in the future, particularly if the concentration of heat-trapping greenhouse gases in the atmosphere continues to rise.

Which is why we need to think about geoengineering, if only as a way to buy time for a gradual transition to clean energy. The Brits are ahead of us in this regard; the UK’s Royal Society, Britain’s premiere scientific society,  published a major study on geoengineering last year, saying that man-made efforts to cool the earth “may provide a potentially useful short-term back-up to mitigation in case rapid reductions in global temperature are needed.”

Since then, government-funded research councils have agreed to sponsor two projects. One is known as the Integrated Assessment of Geoengineering Proposals (IAGP), which will deliver an overview of the different potential techniques that might be used to geoengineer climate. The other, known as Stratospheric Particle Injection for Climate Engineering, or SPICE, spans four UK universities and is intended to address “the gaps in our knowledge about effectiveness and side effects of geoengineering schemes.” Funding is 1.61 million pounds, according to Engineering and Physical Sciences Research Council, a major funder.

Matt Watson

Recently, Matthew Watson, an earth scientist at the University of Bristol, who’s leading one of the research projects, came to Washington to talk about the SPICE project. He spoke to a geoengineering task force assembled by the DC-based Bipartisan Policy Center, which is studying the issue. The SPICE research, he said, is notably because it is publicly-funded and because it will be the first peer-reviewed research that takes geoengineering beyond computer simulations.

The Engineering and Physical Sciences Research Council describes SPICE this way:

The SPICE project will investigate the effectiveness of stratospheric particle injection. It will address the three grand challenges in solar radiation management: 1. How much, of what, needs to be injected where into the atmosphere to effectively and safely manage the climate system? 2. How do we deliver it there? 3. What are the likely impacts?

One part of SPICE, according to Watson, will examine the qualities of particles to be injected into the stratosphere by using lasers at the Rutherford-Appleton laboratory in Oxfordshire. “We’re going to investigate a range of natural and man made particles,” he said, in an effort to figure out which would be best. The issues are quite technical–particles must be very small (o.2 or 0.3 microns thick) to be effective.

A second part of project, he explained, will examine the question of how to deliver the particles. Scientists have talked about using airplanes, balloons or pipes tethered to the ground. Former Microsoft chief technology officer Nathan Myhrvold, who is co-founder of Intellectual Ventures in Seatlle, has talked about building a “garden hose to the sky” to deliver the particles.

Plans call for scientists to build a 1Km-long pipe, about 1/20 of the length that would eventually be needed, on a location still to be determined, and to pump either water or saltwater into the air, to see how the pipe would work. “This is an engineering test, not a climate test,” Watson said.

None of this, it should be noted, will go forward without ample opportunity for the public to comment. Geoengineering raises an array of ethical, political and governance issues; no one would want the discussion to be left to the scientists.

Is geoengineering ready for prime time?

2010 has been a bad year for climate, and an even worse year for climate policy. But for that very reason, it’s been a good year for geoengineering—the notion that humans can deliberately manipulate the climate and cool the earth.

Official Washington is starting to take geoengineering seriously: The Government Accountability Office and a bipartisan task force of experts convened by the New America Foundation will soon report on geoengineering. Bill Gates has invested in geoengineering research. Environmental groups–notably Steven Hamburg, the chief scientist of Environmental Defense Fund–have engaged in the conversation. On a parochial note, at FORTUNE’s Brainstorm Green conference last spring, Stewart Brand talked about why geoengineering is important, to a rapt audience that included Bill Ford and Lee Scott.

David Keith

David Keith, a leading scholar of geoengineering who administers Gates’ $4.6 million grant with  with Stanford climate scientist Ken Caldeira, also spoke at Brainstorm Green. So I was pleased to have a chance to reconnect with him at the excellent annual conference run by the Society of Environmental Journalists at the University of Montana in Missoula.  I expected him to be pleased by the momentum gathering behind  geoengineering lately, but I was wrong.

“I think things are moving too fast,” David told me. “Research programs can be killed by spending too much money too fast.” Besides, he said, people need time to wrap their head around geoenginnering. (Juliet Eilperin of The Washington Post recently described it as playing God with the weather. ) “This is a topic—the first time people hear about it, they have wild ideas,” he said.

As I’ve written before – see this, this and this – geoengineering raises a host of thorny ethical, political and governance issues. Who gets to control the earth’s thermostat? Who decides if and when to deploy geoengineering techniques? Which should be used?

At SEJ, David was on a panel with Dane Scott, director of the center for ethics at the University of Montana, and journalist Eli Kintisch, author of a recent book about geoengineering called Hack the Planet. They all seemed to agree that the technology to cool the earth now exists—either by reflecting sunlight back into the sky, an approach known as solar radiation management, or by capturing carbon dioxide from the air. (Keith has a for-profit startup called Carbon Engineering designed to do just that.) They also agreed that the moral ethical issues surrounding geoengineering are daunting. [click to continue…]